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Abstract

Aeroacoustic formulations in time domain are frequently used to model the aerodynamic sound of airfoils, the time data

being more accessible. The formulation 1A developed by Farassat, an integral solution of the Ffowcs Williams and

Hawkings equation, holds great interest because of its ability to handle surfaces in arbitrary motion. The aim of this work

is to study the numerical sensitivity of this model to specified parameters used in the calculation. The numerical algorithms,

spatial and time discretizations, and approximations used for far-field acoustic simulation are presented. An approach of

quantifying of the numerical errors resulting from implementation of formulation 1A is carried out based on Isom’s and

Tam’s test cases.

A helicopter blade airfoil, as defined by Farassat to investigate Isom’s case, is used in this work. According to Isom, the

acoustic response of a dipole source with a constant aerodynamic load, r0c0
2, is equal to the thickness noise contribution.

Discrepancies are observed when the two contributions are computed numerically. In this work, variations of these errors,

which depend on the temporal resolution, Mach number, source–observer distance, and interpolation algorithm type, are

investigated. The results show that the spline interpolating algorithm gives the minimum error. The analysis is then

extended to Tam’s test case. Tam’s test case has the advantage of providing an analytical solution for the first harmonic of

the noise produced by a specific force distribution.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Noise reduction is one of the challenges that the transportation industry has to face because of the client
demands as well as increasing legal restrictions. Today, accurate prediction of the aerodynamic noise is
playing a major role in the development of new noise reducing concepts. A powerful approach consists of
coupling advanced aerodynamic simulations with the aeroacoustic analogy. This technique is commonly used
to predict noise radiated by propellers, helicopter rotors, and fans. The aerodynamic simulation has to
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

c0 ambient sound speed
dS element of the control surface
D(y) Tam’s directivity in spherical coordi-

nates
f(x,t) ¼ 0 function that describes the source sur-

face
Fx, Fr, Fj Tam’s forces in cylindrical coordinates
H(f) Heaviside function
Jm( ) the mth-order Bessel function
Li components of local force that acts

on the fluid, Li ¼ ðp� p0Þdij � tijþ
�

ruiðuj � viÞcnj

_Lr

qLi

qt
ri

r
M local Mach number vector of source

with respect to a frame fixed to the
undisturbed medium, with components
Mi

_M qMi=qt
Mn Mach number in direction normal to the

surface, Mini

Mr Mach number of source in radiation
direction, Mir̂i

_Mr
_Mir̂i

n unit outward normal vector to the sur-
face, with components ni

Nt number of time steps per period
p̃ far-field acoustic pressure
p̃L loading noise component
p̃T thickness noise component
Pij compressive stress tensor components
r source–observer distance, r ¼ |x�y|
r̂ unit vector in the radiation direction,

with components r̂i

t observer time
tn the nth time step
T blade passage time
Tij Lighthill stress tensor, ruiuj þ Pij �

c20r
0dij

ui components of local fluid velocity
vi components of control surface velocity
vn normal velocity of source surface, vini

v _n vi _ni

_vn _vini

x observer position vector, with compo-
nents xi

(x, r, j) cylindrical coordinates for Tam’s test
case

y source position vector, with components
yi

d(f) Dirac function
dij Kronecker delta
lmN the Nth root of J0m; i.e., J0m (lmN) ¼ 0
y the angle defined by the rotation axis

and the source–observer direction
O rotor angular velocity
r0 density of the medium at rest
t source time (retarded-time)
tij viscosity stress tensor components.

Indices:

½ �
�

the dotted variables denote retarded
temporal derivatives

[ ]r index denotes projection onto the sour-
ce–observer direction

[ ]M index denotes projection on the Mach
number vector
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accurately determine the unsteady loading on the blades, which are used in Ffowcs Williams and Hawkings
(FW&H) integral formulations. Noise sources are only computed around the surface. Then, far-field acoustic
pressure can be calculated by the evaluation of integrals.

Significant theoretical and computational advancements have been achieved with the development of the
time domain integral formulations. Today, almost all deterministic rotor noise predictions are based on time-
domain integral formulations of the FW&H equation. Formulation 1A, an integral solution of the FW&H
equation developed by Farassat [1], holds great interest because of its ability to handle surfaces in arbitrary
motion. Di Francescantonio [2] proposed a new boundary integral formulation, which does not require the
non-penetration condition nor the calculation of the surface pressure normal derivative. Casalino [3]
introduced the advanced time approach in the retarded-time formulation 1A of Farassat. Then, the algorithms
are more efficient because no iterative solutions of the retarded-time equation need to be performed.
Ghorbaniasl and Hirsch [4] presented a series of test cases which are helping to validate the numerical
implementation of the Farassat’s formulation 1A.
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Although progresses has been reported in developing this approach, the results are still very sensitive to
the algorithms, spatial and time discretizations, and approximations used for far-field acoustic simulation.
Thus, quantifying the numerical errors resulting from implementation of formulation 1A is essential for rigorous
noise predictions. In addition, computational codes must be verified and validated by means of well-known test
cases. The verification can be ideally carried out by comparing the computations to analytical solutions; the
numerical errors are calculated through the discrepancies between the numerical and analytical solutions.

The new aspect of this work is a contribution to improve the numerical method accuracy of aeroacoustic
predictions. For this, numerical errors resulting from implementation of formulation 1A are quantified. The
computational and physical parameters, such as the tip Mach number, position of the observer, temporal
resolution, and accuracy of the numerical derivation, are investigated based on an efficient test case: Isom’s
test [5]. According to Isom, the acoustic response of a moving dipole source with a constant aerodynamic load,
r0c0

2, is equal to the thickness noise contribution. Hence, Isom gave a consistency test to validate aeroacoustic
calculation codes. However, even if an integral formulation is well implemented, discrepancies are observed
between Isom’s computed result and thickness noise. Variations of these errors which depend on the
aforementioned computational parameters are investigated. The analysis is then completed with Tam’s test
benchmark [6,7]. Tam’s test case has the advantage of providing an analytical solution for the first harmonic
of the produced noise by specific force distribution.

2. Formulation 1A: numerical implementation

In this part, development of the Ffowcs Williams and Hawkings equation [8] is carried out. The acoustic solver
is based on the integral retarded-time FW&H formulation 1A with permeable surfaces of Di Francescantonio [2]
and Brentner and Farassat [1,9]. The interest of this formulation lies in the fact that time derivative of the integral
terms of FW&H has been eliminated. Moreover, the evaluation of the noise can be done even if the observer is
moving. The thickness and the loading noise of a surface in arbitrary motion are given as

p̃T ðx; tÞ ¼ p̃T1ðx; tÞ þ p̃T2ðx; tÞ

p̃Lðx; tÞ ¼ p̃L1ðx; tÞ þ p̃L2ðx; tÞ þ p̃L3ðx; tÞ

(
(1)

so

p̃ðx; tÞ ¼ p̃T ðx; tÞ þ p̃Lðx; tÞ (2)

where

4pp̃T1ðx; tÞ ¼

ZZ
f ðy;tÞ¼0

r0ð _Un þU _nÞ

rD2

� �
t¼t�r=c0

dS (3)

4pp̃T2ðx; tÞ ¼

ZZ
f ðy; tÞ

r0Unðri
_Mi þ c0ðMr �M2ÞÞ

r2D3

� �
t¼t�r=c0

dS (4)

and

4pp̃L1ðx; tÞ ¼
1

c0

ZZ
f ðy;tÞ¼0

_Lr

rD2

� �
t¼t�r=c0

dS (5)

4pp̃L2ðx; tÞ ¼

ZZ
f ðy;tÞ¼0

Lr � LM

r2D2

� �
t¼t�r=c0

dS (6)

4pp̃L3ðx; tÞ ¼
1

c0

ZZ
f ðy;tÞ¼0

Lrðr _Mr þ c0ðMr �M2ÞÞ

r2D3

� �
t¼t�r=c0

dS (7)
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p̃ is the acoustic pressure, x the observer position and y the source position so r ¼ |x�y| is the source–observer
distance, D ¼ 1�Mr the Doppler factor, L the aerodynamic pressure forces with Li ¼ ðp� p0Þdij � tijþ

�
ruiðuj � vjÞcnj , tij the viscosity stress tensor and dij Kronecker symbol. r0 and c0 are, respectively, the density of
the fluid and the sound speed in a medium at rest. vi is the velocity of the control surface and ui represents the
fluid velocity so Ui ¼ rui=r0 þ ð1� r=r0Þvi. When the control surface is solid, the relative velocity (ui�vi) ¼ 0
and Ui is reduced to Ui ¼ vi. It is important to point out that the terms between the brackets of Eqs. (3)–(7) are
evaluated at retarded time. The retarded-time integrals have the following general form:

4pfðx; tÞ ¼
ZZ

f ðy;tÞ¼0

Q

rN1j1�Mrj
N2

� �
t¼t�r=c0

dS (8)

where N1 and N2 are integers. These integrals are approximated by mid-panel-quadrature algorithm. The
source surface is divided into N panels. The values of the Q’s are approximated at panel centroids, with mc

indices and ymc coordinates.
The retarded integrals are then calculated as

4pfðx; tÞ �
XN

mc¼1

Qðymc; t� rmc=c0Þ

rN1
mc j1�Mrj

N2
mc

DSmc (9)

Integrals are evaluated with the source time regarded as the primary time (i.e., dominant). The source time for
a panel is chosen and determines when the signal will reach the observer. The second then the fourth-order
equidistant derivations, described in Appendix A, are used in this work for the calculation of _Li based on the
inputs of p(t). If the observer is static, then the expression of reception time is given as

t ¼ tþ
rðtÞ
c0

(10)

where t is the emission time. For a moving observer, an expression of the advanced time has been given by
Casalino [3]. The acoustic signal is the summation of all computed values of disturbances emitted by the
sources at different retarded times and reaching the observer at a unique observer time. Thus, an interpolation
of the acoustic pressure at reception time is performed so that the contributions from all source panels can be
summed at the same observer times. The interpolation is carried out with linear, spline and piecewise cubic
Hermite interpolating polynomial algorithms available in Matlab 6.

3. Isom test case

Firstly, the Isom test [5] is reviewed. It has been shown that if a constant aerodynamic load, r0c0
2, is applied

over a moving surface, the generated thickness noise and loading noise must be equal. This assumption can be
demonstrated by applying the wave operator, &2

¼ ð1=c20Þðq
2=qt2Þ � r2

� �
, to the generalized function

r0c0
2[1�H(f)] that is always equal to zero out of the surface defined by f(x, t) ¼ 0. Then, the mathematical form

of the thickness noise and the loading noise are recognized as the left and right sides of Eq. (11), respectively:

q
qt
½r0vndðf Þ� ¼ �

q
qxi

½r0c20nidðf Þ� (11)

A more complete derivation can be found in Refs. [5,10,11]. This analytical result is not always exact when
applied numerically due to the differences of robustness in the integration of the two noises. This difference is
affected by several geometrical and physical parameters of which the influence has not been well studied.

A conventional rotor has been defined for use in Isom’s test case. The same helicopter rotor, as defined by
Farassat et al. [11] to study Isom’s case, is used in this work. It is composed of two blades, Fig. 1(a), of 4m
spanwise length for an external diameter of 10m. The blades are symmetrical biconvex airfoils with a 10
percent thickness ratio (a NACA0010 profile is used). The main chord is equal to 0.4m.

In their first calculations, Farassat et al. [12] did not take into account the tips and the inner faces of
the blades and the results did not agree with the theory. Subsequently, they found that the blade tip is an
effective noise generation area when Isom’s thickness noise formulae were studied [13]. This being corrected, a
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Fig. 1. (a) Blade geometry. (b) Close-up of the blade tip showing the thickness ratio decreases at the extremities of the blade.
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non-negligible discrepancy remained especially at low tip Mach numbers. Their first idea was to decrease the
thickness ratio at the extremities of the blade. Fig. 1(b) includes an expanded version of the end of the blade,
which shows this decreasing thickness. Thus, the quality of the results is improved. The last modification,
adapted by Ghorbaniasl and Hirsch [4], consists of refining the grid at the inner and outer radii of the blade.
Once these improvements are performed, the result is excellent for the specified configuration. In these
previous studies, Isom’s thickness noise formula was used as a verification test case and the evolution of the
errors which depend on the computational and physical parameters were not presented. Therefore, there is a
need to study their effect on the numerical accuracy of the results.

Firstly, the results obtained with the code developed during this study for the blade shown in Fig. 1 and tip
Mach numbers of 0.4 and 0.8 are presented in Fig. 2. The observer is located in the rotation plane at 50m
away from the rotation axis. The temporal resolution consists of 512 time steps per period. The interpolation
of acoustic pressure signals is based on the spline algorithm. The acoustic pressures are non-dimensionalized
with respect to r0c0

2. A good agreement is noticed between the Isom and thickness noise showing that the
numerical implementation is correct.

3.1. Error definition

In order to compare the results obtained when parameters are varied, an accurate definition of the error is
required. This definition must allow a study of the Mach number, time step, and source–observer distance
effects. For Isom’s test case, two sets of values must be compared, p̃L and p̃T , whereas, for Tam’s benchmark,
the comparison is conducted for analytical and numerical solutions. An error metric is defined as the
maximum value of the difference between Isom’s and thickness noise during one time period:

Em ¼ max
t¼T

t¼t0
ðjp̃T ðtÞ � p̃LðtÞjÞ (12)

When the results are varying over a wide range, a relative error is also investigated. In case of comparison with
an analytical solution, definition of the relative error can be written as ErðtnÞ ¼ jp̃numerical � p̃analyticalj=
jp̃analyticalj. However, in Isom’s test case, both of dipole and thickness noises are computed numerically.



ARTICLE IN PRESS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5 x 10-7

t/T, T = 0.1155 s

N
on

-d
im

en
si

on
al

iz
ed

 A
co

us
tic

 P
re

ss
ur

e,
 [-

]

ISOM
Monopole, M = 0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1 x 10-5

t/T, T = 0.0577 rd/s

N
on

-d
im

en
si

on
al

iz
ed

 A
co

us
tic

 P
re

ss
ur

e,
 [-

]

ISOM
Monopole, M = 0.8

Fig. 2. Acoustic pressure signatures for a two-bladed rotor, (a) tip Mach number 0.4, (b) tip Mach number 0.8.
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Alternatively, the maximum level is maxðjp̃T ðtnÞj; jp̃LðtnÞjÞ taken as the reference value, and definition of Er for
comparison of loading and thickness noises at each time step is given as

ErðtnÞ ¼
jp̃T ðtnÞ � p̃LðtnÞj

maxðjp̃T ðtnÞj; jp̃LðtnÞjÞ
(13)

The relative error, Er, then takes into account the scale (magnitude). This definition allows error varying from
0 to 1. In order to evaluate the discrepancy between two curves, the error considered is the arithmetical mean
of the time relative errors:

Er ¼
1

Nt

XT

t¼t0

ErðtnÞ (14)

It is important to point out that the aerodynamic loading is constant, equal to r0c0
2, in Eqs. (12)–(14) so that

p̃L ¼ p̃ISOM , and the errors identify differences between the Isom and thickness noise. These differences
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quantify numerical errors resulting from numerical implementation of formulation 1A. Ideally, they should be
equal to zero.
3.2. Mach number

As noticed by Brentner and Farassat [11], for subsonic motions, the discrepancy between computed Isom’s
noise and thickness noise, which are theoretically equal, increases when Mach number is decreasing. A good
illustration is given in Fig. 3 for 0.2 tip Mach number. The parameters used are the same as those in
computation of the results for 0.4 and 0.8 Mach numbers (Fig. 2).

In order to study the sensitivity of the model to the tip Mach number, the same configuration is kept and
only the tip Mach number is varied from 0.1 to 0.9. The non-dimensional error metric, as shown in Fig. 4(a), is
increasing with the tip Mach number. Here, the error metric is not representative of the discrepancies; it is
predictable that the metric error varies in the same way as for the acoustic pressure amplitudes, which are
more important for higher Mach numbers. The evolution of the relative error as a function of the Mach
number is then represented in Fig. 4(b). The mean relative error decreases when the Mach number is
increasing. This result suggests that the mesh grid has to be refined near the regions moving at low Mach
number, i.e., near the inner radius. Computation accuracy at low Mach numbers is of practical interest for the
loading noise prediction. Actually, these errors are also representative of the computation accuracy of loading
noise since the same algorithms are used in the computation of both noises.
3.3. Temporal resolution, interpolation algorithm types and order of the derivation

In this section, the previous geometry is kept with the same mesh grid, the observer is in the rotation plane,
and the number of time steps per one rotation period is varied. The linear, spline and piecewise cubic Hermite
interpolating polynomial algorithms are compared. For each case, two differentiation algorithms are used in
the computation of _L: second-order (R2) and fourth-order equidistant derivations scheme (R4). The error
metric, Em, as a function of the number of time steps per period, for 0.1, 0.2, 0.4, 0.6 and 0.8 tip Mach numbers
is presented in Fig. 5. As expected, these errors decrease when the temporal resolution is refined. For all the
investigated tip Mach numbers, the results are very sensitive to the interpolation algorithm type. The spline
algorithm gives the best results for all tip Mach numbers. The spline method is known to produce a smoother
result, i.e., is continuous if the data are smooth which is actually our case. As expected, from Fig. 5(e), the
linear interpolation is less stable and gives the worst results. The cubic method is known to preserve
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Fig. 3. Acoustic pressure signatures for a two-bladed rotor, tip Mach number 0.2.



ARTICLE IN PRESS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8 x 10-8

E
m

, [
-]

Tip Mach number

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tip Mach number

M
ea

n 
re

la
tiv

e 
er

ro
r E

r, 
[-]

Fig. 4. Numerical errors as a function of tip Mach number, (a) error metric Em, (b) mean relative error Er.

D. Fedala et al. / Journal of Sound and Vibration 321 (2009) 662–679 669
monotonicity and the shape of the data. For all cases, the fourth-order derivation gives better results
particularly for the spline interpolation. For the configuration presented, 512 time steps per period are
sufficient to give a minimal error. This value is used for the following computations with the spline algorithm
for interpolation of acoustic pressure signals and the fourth-order equidistant derivation scheme.

The non-dimensional computation time as a function of the number of time steps per period is represented
for the different interpolating algorithms in Fig. 6. The time resource needed for 2024 time steps per period
with the spline algorithm is taken as the reference value. The computation time is directly proportional to
temporal resolution. For the linear and the piecewise cubic Hermite interpolating algorithms, the cost is
respectively around 91 and 95 percent of the computation time needed for the spline algorithm.

3.4. Source– observer distance

The parameter considered in this section is the source–observer distance. Even if, theoretically, the
formulation F1A is adequate to predict aeroacoustic noise in near-field domain, as noticed in Brentner and
Farassat [9], the numerical results are sensitive to source–observer distance.
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The error metric dependence on the source–observer distance is represented in Fig. 7(a). The distances are
non-dimensionalized with respect to the blade span (4m). The discrepancies decrease when the observer is in
the far field. When the mean relative error Er is considered, as shown in Fig. 7(b), although a minimum is
noticed around 250m, the discrepancy between loading noise and thickness noise is relatively constant in
relative value staying between 0.53 and 0.57 percent. In other terms, the integrals in far-field domain (1/r) and
near-field domain (1/r2) are estimated with the same accuracy. Source–observer distance is not a source of
error and the numerical scheme presented describes far-field domain as well as near-field noise generation
confirming the ability to predict the aeroacoustic noise in near-field domain.

3.5. Directivity

In order to study the directivity, the observer is located at 50m away from the rotation center and the angle
defined by observer position vector and the rotation plane is varied. An angle of 01 corresponds to the
observer position at the rotation plane. The tip Mach number is fixed at 0.8. The number of time steps per
rotation period is 512. Figs. 8(a) and (b) show respectively the non-dimensional and the levels in dB of the
maxima of jp̃T j and jp̃Lj over one period depending on the rotation angle. The directivity feature shows a
dipole character. Acoustic pressures found are maxima in the rotation plane. On the other hand, they are
minima along the rotation axis. On the rotation axis, the tangential aerodynamic forces, are not responsible
for noise emission since the source terms Lr are null for this force components (the tangential forces are
perpendicular to source–observer vector r). Only the axial forces can generate noise on the rotation axis.

The error metric as shown on Fig. 9(a) is more significant out of the rotation plane. This result suggests that
the temporal resolution have to be refined for observers out of the rotation axis. Observing the relative error
dependence on the angle y, Fig. 9(b), confirms that the regions with maximum relative error are those where
the acoustic pressures are minima. For some values of y, Er is nearly equal to 1, meaning that near the rotation
axis, the error is significant. One could conclude that the large error shown in Fig. 9 at the rotation axis has no
real significance in that the acoustic pressures at these locations are nearly zero as shown in Fig. 8(a).
However, Fig. 8(b) illustrates that the acoustic pressure levels are not negligible in the rotation axis.

4. Tam test case

The second test case studied in this work has been presented by Tam [6] in the third CAA benchmark
problems workshop. The problem consists of computing the noise radiated by a specified analytical force
distribution. Subsequently, an exact solution [7] of the linearized Euler equations was developed for the first
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harmonic of the noise produced by this distribution of forces. The geometrical configuration is shown in
Fig. 10: the rotor is 1.6m long and its radius is 1m.

In this section the variables are non-dimensionalized with respect to the following scales:
length scale
 b, length of the blade

velocity scale
 c0, ambient sound speed

time scale
 b/c0

density scale
 r0, ambient fluid density

pressure scale
 r0c0

2

body force scale
 r0c0
2/b
The physical rotor is replaced in a cylindrical coordinates (x, r, j) by the following distribution of forces:

F rðr;j;x; tÞ

Fjðr;j; x; tÞ

Fxðr;j; x; tÞ

2
64

3
75 ¼ Re

0

F̃jðr;xÞ

F̃xðr;xÞ

8><
>:

9>=
>;eimðj�OtÞ (15)



ARTICLE IN PRESS

  1e-005

  2e-005

  3e-005

  4e-005

30

210

60

240

90

270

120

300

150

330

0180

Isom
Monopole, M = 0.8

  50

  100

  150 [dB]

30

210

60

240

90

270

120

300

150

330

180 0

Isom
Monopole, M = 0.8

Fig. 8. Directivity of the maximum amplitude of the Isom and thickness noise maxt¼T
t¼t0
jp̃T ðtÞj and maxt¼T

t¼t0
jp̃Lj, respectively, (a) (Pa), (b) dB,

pref ¼ 2� 10�5 Pa.

D. Fedala et al. / Journal of Sound and Vibration 321 (2009) 662–679 673
where

F̃jðr;xÞ ¼
F ðxÞr Jm ðlmN rÞ; rp1;

0; r41;

(
F̃xðr; xÞ ¼

F ðxÞ JmðlmNrÞ; rp1

0; r41

(

F ðxÞ ¼ expf�ðln 2Þð10xÞ2g

and Jm( ) is the mth-order Bessel function, lmN is the Nth root of J0m; i.e., J0m (lmN) ¼ 0. The calculation has
been made for an eight blade rotor, so m ¼ 8 and setting N ¼ 1, the value of lmN ¼ 9.64742. O is also non-
dimensional.

Tam showed that the acoustic pressure for the sound radiated at the first harmonic mO can be approached by

p̃ðR; y; tÞ
R!1

�
2

R
AðkSÞe

imOðR�tÞ�i=2ðmþ1Þp (16)
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where

AðkSÞ ¼
1

4

p
100 ln 2

� �1=2 m2ð1þ O cos yÞO sin y

l2mN �m2O2sin2 y
JmðlmN ÞJ

0
mðmO sin yÞe�m2O2 cos2 y=400 ln 2 (17)

and kS ¼ mO cos y.
It is to be noted that the term mO sin y in the expression for A(ks) presented in Eq. (17) appeared as mR sin y

in Ref. [6]. This is certainly a typographical error. The directivity D(y) in spherical coordinates is defined as

DðyÞ ¼ lim
R!1

R2p̃2ðR; y;j; tÞ ¼ 2A2ðkSÞ (18)

The over-bar denotes the time average. In order to test the code based on the FW&H equation, Tam’s
benchmark problem was adapted by Hirsch et al. [4,14] by removing the harmonic exponential dependence of
the blade force. A new blade force was defined as

Frðr;j; x; tÞ

Fjðr;j;x; tÞ

F xðr;j;x; tÞ

2
64

3
75 ¼ Re

0

F̃jðr; xÞ

F̃xðr; xÞ

8><
>:

9>=
>; (19)

The aerodynamic forces defined in Eq. (19) are substituted into the loading noise sources of formulation 1A.
The first harmonic of the computed solution should be identical to Tam’s analytical solution. As the problem
is axisymmetric about the x-axis the computational domain is defined in the r–x plane for �0.8pxp0.8 and
0prp1. The blade surface is discretized into equally spaced points (40 points along x-axis� 25 points along
r-axis). The results given by Tam [6] are reproduced by the acoustic solver developed in this work.

Fig. 11 shows the results obtained for O ¼ 0.85 at R ¼ 100m. In Fig. 11(a) is shown the computed dipole
far-field acoustic pressure with F1A at (y ¼ 901 and R ¼ 100m, O ¼ 0.85). The first harmonic of this signal is
compared to Tam’s analytical solution in Fig. 11(b). The computed directivity of the first harmonic is
presented in Fig. 11(c). The results agree perfectly. This suggests that the numerical method predicts the dipole
noise accurately at O ¼ 0.85. The same results are presented in Fig. 12 for O ¼ 0.6. Some discrepancies are
noticed and the agreement is less significant. These results reinforce those obtained in the Mach number effect
study for Isom’s test case.
5. Conclusion

Development of the Ffowcs Williams and Hawkings equation is carried out. The acoustic solver is based on
the integral retarded time of formulation 1A developed by Brentner and Farassat. The retarded-time integrals
are approximated by a mid-panel-quadrature algorithm. They are calculated with the source time regarded as
the primary time (i.e., dominant). The second and then the fourth-order equidistant derivations are used for
the evaluation of aerodynamic loadings. An interpolation of the acoustic pressure at the reception time is
performed with linear, spline or piecewise cubic Hermite interpolating polynomial so that the contributions
from all source panels are summed at the same observer times.

A parametric study of the relevant criteria is conducted based on Isom’s and Tam’s test cases. In order to
compare the results obtained when parameters are varied, error metric and relative average error definitions
are introduced. For Isom’s test case, thickness noise is compared to loading noise whereas, for Tam’s
benchmark, the comparison is performed between analytical and numerical solutions.

The same helicopter rotor, as defined by Farassat to study Isom’s case, is used. The mean relative error
decreases when the Mach number increases. This result suggests that the mesh must be refined near the regions
moving at low Mach number. Although the errors decrease when temporal resolution is refined, the results are
very sensitive to interpolation algorithm type. The spline interpolation is giving the best accuracy for low
temporal resolution. However, all algorithms tend to the same accuracy for high temporal resolution. For the
configuration presented, 512 time steps are sufficient to give a minimum error. For practical configurations,
conducting this test should give the minimum number of time steps needed to have an accurate acoustic
solution.
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compared to Tam’s analytical solution, Eq. (15), (c) computed first harmonic directivity with F1A compared to Tam’s analytical solution,

Eq. (17).
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Even if, theoretically, the formulation F1A is adequate to predict the near-field aerodynamic noise,
the numerical results are sensitive to source–observer distance. The absolute error decreases when the
observer is in the far field. However, the discrepancy between loading noise and thickness noise is nearly
constant in relative value. In other terms, the far-field and near-field integrals are estimated with the same
accuracy.

The directivity feature shows a dipole character. The acoustic pressures found are maxima in the rotation
plane. On the other hand, the acoustic pressures are minima along the rotation axis. This is explained by the
fact that on the rotation axis, the tangential forces are not responsible for noise emission (source terms Lr are
null for this force components since the tangential forces are perpendicular to the source–observer vector r).
Only axial forces can generate noise on the rotation axis.

The analysis is then extended to Tam’s test case. The results agree in case of O ¼ 0.85, whereas, for O ¼ 0.6,
some discrepancies are noticed confirming that the errors increase when tip Mach number decreases.
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Appendix A

The central difference formula for the second-order temporal derivation is given as

qF
qt

	 

n

¼
Fnþ1 � Fn�1

2Dt
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The fourth-order temporal derivation is calculated through a five point central difference formula:

qF
qt

	 

n

¼
Fn�2 � 8Fn�1 þ 8Fnþ1 � Fnþ2

12Dt

When the retarded time steps are non-equidistant, the second-order derivation has the form

qF
qt

	 

n

¼
ðtn � ti�1Þ

2Fi � ðti � tnÞ
2Fi�1

ðti � tnÞðtn � ti�1Þðti � ti�1Þ
þ
½ðtn � tiÞ

2
� ðti � ti�1Þ

2
�Fn

ðti � tnÞðtn � ti�1Þðti � ti�1Þ

where
FðtnÞ ¼ FðtiÞtn � ti�1=ti � ti�1 þ Fðti�1Þti � tn=ti � ti�1, ti is the first time tiptn where the aerodynamic

data are available.
The fourth-order temporal derivation could be calculated through the polynomial development as follows:

qF
qt

	 

n

¼ a1 þ 2a2tn þ 3a3t2n

where

ai ¼
Di

D

D ¼

1 ti�1 t2i�1 t3i�1
1 ti t2i t3i
1 tiþ1 t2iþ1 t3iþ1
1 tiþ2 t2iþ2 t3iþ2

����������

����������
¼ 12ðDtÞ6

D1 ¼

1 Fi�1 t2i�1 t3i�1

1 Fi t2i t3i

1 Fiþ1 t2iþ1 t3iþ1

1 Fiþ2 t2iþ2 t3iþ2

�����������

�����������
¼ � 2ðDtÞ3½3t2i þ 6tiDtþ 2ðDtÞ2�Fi�1 þ 6ðDtÞ3½3t2i þ 4tiDtþ 2ðDtÞ2�Fi

� 6ðDtÞ3½3t2i þ 4tiDtþ 2ðDtÞ2�Fiþ1 þ 2ðDtÞ3½3t2i þ ðDtÞ
2
�Fiþ2

D2 ¼

1 ti�1 Fi�1 t3i�1

1 ti Fi t3i

1 tiþ1 Fiþ1 t3iþ1

1 tiþ2 Fiþ2 t3iþ2

�����������

�����������
¼ 6ðDtÞ3½ti þ Dt�Fi�1 � 6ðDtÞ3½3ti þ 2Dt�Fi

þ 6ðDtÞ3½3ti þ Dt�Fiþ1 � 6ðDtÞ3tiFiþ2
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D3 ¼

1 ti�1 t2i�1 Fi�1

1 ti t2i Fi

1 tiþ1 t2iþ1 Fiþ1

1 tiþ2 t2iþ2 Fiþ2

�����������

�����������
¼ � 2ðDtÞ3Fi�1 þ 6ðDtÞ3Fi þ 6ðDtÞ3Fiþ1 � 2ðDtÞ3Fiþ2
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